Fast high-resolution drawing of algebraic curves and surfaces

Nuwan Herath Mudiyanselage
Thesis supervised by Guillaume Moroz and Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

June 2, 2023

Overview

(1) Implicit curve drawing
(2) Previous work
(3) Our approach

4 Fast multipoint evaluation
(5) Algorithms
(6) Experiments

Implicit curve drawing

Scientific visualization

Some scientific visualization applications:

- modeling
- medical imaging
- mechanism design

3D CT reconstruction of distal tibia fracture

Industrial robots from KUKA by Mixabest
(CC BY-SA 3.0)

Implicit curve drawing problem

General problem

Discrete representation of an implicit curve on a fixed grid

- Input:
- function F
- resolution N
- visualization window

Implicit curve defined as the solution set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid F(x, y)=0\right\}
$$

- Output: drawing (set of pixels)

Implicit curve drawing problem

Our focus

Discrete representation of an algebraic curve on a fixed grid

- Input:
- bivariate polynomial P of partial degree d
- resolution N
- window $[-1,1] \times[-1,1]$

Algebraic curve defined as the solution set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid P(x, y)=0\right\}
$$

- Output: drawing (set of pixels)

Goal: fast high-resolution drawing of high degree algebraic curves

- $d \approx 100 \longrightarrow d^{2} \approx 10,000$ monomials
- $N \approx 1,000$

Correctness of the drawing

For numerical reasons, there may be some:

- False negative pixels

Correctness of the drawing

For numerical reasons, there may be some:

- False negative pixels
- False positive pixels

Previous work

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

The idea
2D variant of the widely used marching cubes algorithm [Lorensen \& Cline, 1987] Implicit curve defined by $P(X, Y)=0$

Marching squares

Complexity

Complexity (number of elementary operations)
Naive evaluation

$$
\theta\left(d^{2} N^{2}\right)
$$

d partial degree
N resolution of the grid

Arithmetic complexity of the marching squares

With partial evaluation of $P(x, y)$, assuming $d<N$

$$
\theta\left(d N^{2}\right)
$$

Slow for high resolutions... Can we have an algorithm in $O(d N)$?

Adaptive subdivision

Local refinements of the grid

Methods providing topological correctness

Adaptive 2D subdivision with interval arithmetic

- [Snyder, 1992]
- [Plantinga \& Vegter, 2004]
- [Burr et al., 2008]
- [Lin \& Yap, 2011]
- ...

Cylindrical algebraic decomposition (CAD)

- [Gonzalez-Vega \& Necula, 2002]
- [Eigenwillig et al., 2007]
- [Alberti et al., 2008]
- [Cheng et al., 2009]
- [Kobel \& Sagraloff, 2015]
- [Diatta et al., 2018]

[Lin \& Yap, 2011]

https://isotop.gamble.loria.fr/

Our approach

A prerequisite

Interval arithmetic

For $I=[\underline{I}, \bar{T}]$ and $J=[\underline{J}, \bar{J}]$,
$\bullet I+J=[\underline{I}+\underline{J}, \bar{I}+\bar{J}]$

- $I-J=[\underline{I}-\bar{J}, \bar{I}-J]$

A prerequisite

Interval arithmetic

For $I=[\underline{I}, \overline{1}]$ and $J=[\underline{J}, \bar{J}]$,

- $I+J=[\underline{I}+\underline{J}, \bar{I}+\bar{J}]$
- $I-J=[\underline{I}-\bar{J}, \bar{I}-J]$
- ...

Evaluation of the function $f(X)=X^{2}-X=(X-1) X$ on the interval $[0,2]$

- $[0,2]^{2}-[0,2]=[0,4]-[0,2]=[-2,4]$
- $([0,2]-1) \cdot[0,2]=[-1,1] \cdot[0,2]=[-2,2]$

Interval arithmetic

Inclusion property

$$
P(X)=2 X^{3}-X^{2}-1.5 X+0.75
$$

How to compute $P(I)$ for $I=[-1,1]$?

x	-1		$x_{1}=\frac{1-\sqrt{10}}{6}$		$x_{2}=\frac{1+}{}$		1
$P^{\prime}(x)$		+	0	-	0	+	
$P(x)$							

$$
P(I)=[-0.75,1.06 \ldots]
$$

Interval arithmetic

Inclusion property

$$
P(X)=2 X^{3}-X^{2}-1.5 X+0.75
$$

How to compute $P(I)$ for $I=[-1,1]$?

$$
\begin{aligned}
\square P(I) & =2[-1,1]^{3}-[-1,1]^{2}-1.5[-1,1]+0.75 \\
& =[-5.25,5.25]
\end{aligned}
$$

$$
P(I)=[-0.75,1.06 \ldots]
$$

Interval arithmetic

Inclusion property

$$
P(X)=2 X^{3}-X^{2}-1.5 X+0.75
$$

How to compute $P(I)$ for $I=[-1,1]$?

$$
\begin{aligned}
\square P(I) & =2[-1,1]^{3}-[-1,1]^{2}-1.5[-1,1]+0.75 \\
& =[-5.25,5.25]
\end{aligned}
$$

With Horner's scheme:

$$
\begin{aligned}
\square P(I) & =((2[-1,1]-1)[-1,1]-1.5)[-1,1]+0.75 \\
& =[-3.75,5.25]
\end{aligned}
$$

$$
P(I) \subseteq \square P(I)
$$

$$
P(I)=[-0.75,1.06 \ldots]
$$

Interval arithmetic

Convergence property

Convergence at a point With $x \in[a, b]$

$$
\lim _{[a, b] \longrightarrow[x, x]=\{x\}} \square P([a, b])=P(x)
$$

Our approach: guaranteed intersection with the grid

Marching squares

Adaptive subdivision

New approach: evaluation along fibers

\Rightarrow Make it fast and provide some guarantees

Two algorithms

Edge drawing

- evaluation in X

Chebyshev nodes multipoint evaluation with IDCT

- subdivision in Y naive root finding method

Guarantees

False positive and false negative pixels

Pixel drawing

- evaluation in X

Chebyshev nodes multipoint evaluation with IDCT Taylor approximation

- subdivision in Y naive root finding method

Guarantees

False positive pixels only

Subdivisions along a fiber

 $P\left(x_{k}, Y\right)=\sum a_{j} Y^{j}$

Subdivisions along a fiber

 $P\left(x_{k}, Y\right)=\sum a_{j} Y^{j}$| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Subdivisions along a fiber

 $P\left(x_{k}, Y\right)=\sum a_{j} Y^{j}$| | | | | | | 娄 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | 娄 | | |
| | | | | | | 娄 | | |
| | | | | | | 娄 | | |
| | | | | | | | | |
| | | | | | | | | |

Subdivisions along a fiber

 $P\left(x_{k}, Y\right)=\sum a_{j} Y^{j}$

Subdivisions along a fiber

 $P\left(x_{k}, Y\right)=\sum a_{j} Y^{j}$

An example

$$
X^{2}+Y^{2}-1=0
$$

Resolution $N=64$

Pixel lighting
 Edge drawing

Pixel lighting
 Edge drawing

- Detect a crossing between two consecutive nodes of the grid

Pixel lighting
 Edge drawing

- Detect a crossing between two consecutive nodes of the grid
- Light the adjacent pixels

Pixel lighting
 Pixel drawing

- Detect a crossing in pixel of the grid
- Light that pixel

False positive and false negative pixels Edge drawing

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel

False positive and false negative pixels

Edge drawing

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel
- False positive when the evaluation on an edge of a pixel is close to zero That occurs for a segment S when

$$
0 \in \square P(S)+[-E, E]
$$

Certification of segments that are not crossed:

$$
\begin{gathered}
0 \notin \square P(S)+[-E, E] \\
\Downarrow \\
0 \notin P(S)
\end{gathered}
$$

False positive and false negative pixels

Pixel drawing

Some incorrect pixels:

- False negative when a connected component ties inside of a pixet
- False positive when the evaluation on an edge of a pixel is close to zero
That occurs for a segment S when

$$
0 \in \square P(S)+[-E, E]
$$

Certification of segments that are not crossed:

$$
\begin{gathered}
0 \notin \square P(S)+[-E, E] \\
\Downarrow \\
0 \notin P(S)
\end{gathered}
$$

Fast multipoint evaluation

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials $\left(T_{k}\right)$ verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$
The first three Chebyshev polynomials

$$
\begin{array}{ll}
\cos (0 \cdot \theta)=1 & T_{0}=1 \\
\cos (1 \cdot \theta)=\cos (\theta) & T_{1}=X \\
\cos (2 \cdot \theta)=2 \cos (\theta)^{2}-1 & T_{2}=2 X^{2}-1
\end{array}
$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials $\left(T_{k}\right)$ verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$
p(X)=\sum_{k=0}^{d} \alpha_{k} T_{k}(X)
$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_{k}) verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$
p(X)=\sum_{k=0}^{d} \alpha_{k} T_{k}(X)
$$

Lemma

For $N \in \mathbb{N}$, a polynomial p of degree d can be evaluated on the Chebyshev nodes $\left(c_{n}\right)_{0 \leq n \leq N-1}$ using the IDCT:

$$
\left(p\left(c_{n}\right)\right)_{0 \leq n \leq N-1}=\frac{1}{2}\left(\alpha_{0}, \ldots, \alpha_{0}\right)+\operatorname{IDCT}\left(\left(\alpha_{k}\right)_{0 \leq k \leq N-1}\right)
$$

A prerequisite to fast multipoint evaluation

Chebyshev nodes

Definition

For $N \in \mathbb{N}$, the Chebyshev nodes are

$$
c_{n}=\cos \left(\frac{2 n+1}{2 N} \pi\right), n=0, \ldots, N-1
$$

They are the roots of T_{N}

$N=6$

$N=11$

$N=20$

Inverse Discrete Cosine Transform

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right]
$$

IDCT

$$
\left(\alpha_{k}\right) \cdots \cdots+\cdots\left(V_{k}\right) \xrightarrow{\text { Innear transormation }}\left(v_{k}\right) \cdots \cdots \cdots\left(x_{k}\right)
$$

\Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O\left(N \log _{2} N\right)$
[Makhoul, 1980]

Inverse Discrete Cosine Transform

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
\left.\begin{array}{c}
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
\text { IDCT } \\
\begin{array}{c}
\text { linear transformation } \\
\left(\alpha_{k}\right) \rightarrow-\rightarrow\left(V_{k}\right)
\end{array} \xrightarrow{\text { FFT }}\left(v_{k}\right)-\cdots{ }^{\text {linear transformation } v}
\end{array} x_{k}\right) .
$$

\Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O\left(N \log _{2} N\right)$
[Makhoul, 1980]

$$
p\left(c_{n}\right)=\sum_{k=0}^{N-1} \alpha_{k} T_{k}\left(\cos \left(\frac{2 n+1}{2 N} \pi\right)\right)
$$

Inverse Discrete Cosine Transform

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
\left.\begin{array}{c}
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
\text { IDCT } \\
\begin{array}{c}
\text { linear transformation } \\
\left(\alpha_{k}\right) \rightarrow-\rightarrow\left(V_{k}\right)
\end{array} \xrightarrow{\text { FFT }}\left(v_{k}\right)-\cdots{ }^{\text {linear transformation } v}
\end{array} x_{k}\right) .
$$

\Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O\left(N \log _{2} N\right)$ [Makhoul, 1980]

$$
p\left(c_{n}\right)=\sum_{k=0}^{N-1} \alpha_{k} T_{k}\left(\cos \left(\frac{2 n+1}{2 N} \pi\right)\right)=\sum_{k=0}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right]
$$

Inverse Discrete Cosine Transform

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
\begin{gathered}
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
\text { IDCT } \\
\left(\alpha_{k}\right) \rightarrow-\rightarrow\left(V_{k}\right) \xrightarrow{\text { linear transformation }}\left(v_{k}\right) \xrightarrow{\substack{\text { linear transformation } v}}\left(x_{k}\right)
\end{gathered}
$$

\Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O\left(N \log _{2} N\right)$ [Makhoul, 1980]

$$
\begin{aligned}
p\left(c_{n}\right) & =\frac{1}{2} \alpha_{0}+\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
\left(p\left(c_{n}\right)\right)_{0 \leq n \leq N-1} & =\frac{1}{2}\left(\alpha_{0}, \ldots, \alpha_{0}\right)+\operatorname{IDCT}\left(\left(\alpha_{k}\right)_{0 \leq k \leq N-1}\right)
\end{aligned}
$$

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Theorem (H., Moroz, Pouget, 2022)

Assume radix-2, precision-p arithmetic, with rounding unit $u=2^{-p}$. Let \hat{x} be the computed 2^{n}-point IDCT of $\alpha \in \mathbb{C}^{2^{n}}$, and let x be the exact value. Then

$$
\|\widehat{x}-x\|_{\infty}=n\|\alpha\|_{\infty} O(u)
$$

Table: IDCT error bounds for $p=53$ (double precision)

$N=2^{n}$	1,024	2,048	4,096	8,192	16,384	32,768				
$\\|\widehat{x}-x\\|_{\infty} /\\|\alpha\\|_{\infty}$	$7.97 \mathrm{e}-15$	$8.84 \mathrm{e}-15$	$9.72 \mathrm{e}-15$	$1.06 \mathrm{e}-14$	$1.15 \mathrm{e}-14$	$1.23 \mathrm{e}-14$				

Algorithms

General idea: edge enclosure
Illustration

$$
\begin{aligned}
P(X, Y) & =\sum\left(\sum a_{i, j} X^{i}\right) Y^{j}=\sum p_{j}(X) Y^{j} \\
p_{j}(X) & =\sum a_{i, j} X^{i}=\sum \alpha_{i, j} T_{i}(X) \\
\left(p_{j}\left(c_{n}\right)\right)_{0 \leq n \leq N-1} & =\frac{1}{2}\left(\alpha_{0, j}, \ldots, \alpha_{0, j}\right)+\operatorname{IDCT}\left(\left(\alpha_{k, j}\right)_{0 \leq k \leq N-1}\right)
\end{aligned}
$$

General idea: edge enclosure
Illustration
$P\left(c_{n}, Y\right)=\sum p_{j}\left(c_{n}\right) Y^{j}$

General idea: edge enclosure
Illustration
$P\left(c_{3}, Y\right)=\sum p_{j}\left(c_{3}\right) Y^{j}$

General idea: edge enclosure
Illustration
$P\left(c_{3}, Y\right)=\sum p_{j}\left(c_{3}\right) Y^{j}$

General idea: edge enclosure
Illustration
$P\left(c_{3}, Y\right)=\sum p_{j}\left(c_{3}\right) Y^{j}$

General idea: edge enclosure
Illustration
$P\left(c_{3}, Y\right)=\sum p_{j}\left(c_{3}\right) Y^{j}$

An edge enclosing algorithm

IDCT multipoint evaluation in X at $c_{0}, c_{1} \ldots$
subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

An edge enclosing algorithm

IDCT multipoint evaluation in X at $c_{0}, c_{1} \ldots$
subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

An edge enclosing algorithm

IDCT multipoint evaluation in X

$$
\text { at } c_{0}, c_{1} \ldots
$$

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

General idea: pixel enclosure
Illustration
$P(I, Y)=\sum p_{j}(I) Y^{j}$

General idea: pixel enclosure
Illustration
$P(I, Y)=\sum p_{j}(I) Y^{j}$

General idea: pixel enclosure

Illustration
$P(I, Y)=\sum p_{j}(I) Y^{j}$

General idea: pixel enclosure
Illustration
$P(I, Y)=\sum p_{j}(I) Y^{j}$

A pixel enclosing algorithm

IDCT multipoint evaluation in X around $c_{0}, c_{1} \ldots$

A pixel enclosing algorithm

IDCT multipoint evaluation +
Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

$$
\left|p\left(c_{n}+r\right)-\left(p\left(c_{n}\right)+r p^{\prime}\left(c_{n}\right)+\cdots+\frac{r^{m}}{m!} p^{(m)}\left(c_{n}\right)\right)\right| \leq \max _{l_{c_{n}}}\left|p^{(m+1)}\right| \frac{|r|^{(m+1)}}{(m+1)!}
$$

A pixel enclosing algorithm

IDCT multipoint evaluation +
Taylor approximation in X
subdivision in Y
Taylor expansion of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

$$
\left|p\left(c_{n}+r\right)-\left(p\left(c_{n}\right)+r p^{\prime}\left(c_{n}\right)+\cdots+\frac{r^{m}}{m!} p^{(m)}\left(c_{n}\right)\right)\right| \leq \max _{l_{c_{n}}}\left|p^{(m+1)}\right| \frac{|r|^{(m+1)}}{(m+1)!}
$$

A pixel enclosing algorithm

IDCT multipoint evaluation +
Taylor approximation in X
subdivision in Y
Taylor expansion of the partial polynomials of $P(X, Y)=\sum p_{j}(X) Y^{j}$

$$
\left|p\left(c_{n}+r\right)-\left(p\left(c_{n}\right)+r p^{\prime}\left(c_{n}\right)+\cdots+\frac{r^{m}}{m!} p^{(m)}\left(c_{n}\right)\right)\right| \leq \max _{l_{c_{n}}}\left|p^{(m+1)}\right| \frac{|r|^{(m+1)}}{(m+1)!}
$$

Complexities

Arithmetic complexities

multipoint evaluation and subdivision	$O\left(d^{3}+d N \log _{2}(N)+d N T\right)$
multipoint Taylor approximation and subdivision	$O\left(m d^{3}+m d N \log _{2}(N)+d N T\right)$

d partial degree
N resolution
T maximum number of nodes of the subdivision trees over all vertical fibers / stripes

With a constant number of branches in the window, we expect $T=O\left(\log _{2}(N)\right)$

Experiments

Pixel classification

- crossed: blue
- not crossed: Whoite
- undecided: yellow

Drawing for two families of polynomials

Experiments on smooth curves \longrightarrow random polynomials $\xi_{i, j}$: random coefficients in $[-100,100]$

Kac polynomial

Kostlan-Shub-Smale (KSS) polynomial

$$
P(X, Y)=\sum_{i+j=0}^{d} \sqrt{\frac{d!}{i!j!(d-i-j)!}} \xi_{i, j} X^{i} Y^{j}
$$

Drawing for two families of polynomials

Figure: Kac polynomial of degree $d=110$ at a resolution $N=1,024, \frac{b}{b+y}=24 \%$

Drawing for two families of polynomials

Figure: KSS polynomial of degree $d=40$ at a resolution $N=1,024, \frac{b}{b+y}=19 \%$

Comparison to state-of-the-art software

Our methods

- edge drawing \rightarrow curve enclosing edges
- pixel drawing \rightarrow curve enclosing pixels
false positive and false negative false positive

Some similar methods

- scikit / NumPy \rightarrow marching squares
- MATLAB \rightarrow could not find the method used
- ImplicitEquations \rightarrow 2D adaptive subdivision

A topologically correct method

- Isotop \rightarrow cylindrical algebraic decomposition

Timing

Comparison for a polynomial

Computation times for a Kac polynomial of degree 40 (in seconds)

Timing

Comparison for a polynomial

Computation times for a Kac polynomial of degree 40 (in seconds)
scikit: $O\left(d N^{2}\right)$
Our methods: $O(d N T)$
as expected $T=O\left(\log _{2}(N)\right)$
guarantees
fast when d and N are large

Output for a singular curve

Curve: dfold $_{8,1}$ from Challenge 14 of Oliver Labs[13][37] $(d=18)$

Conclusion

Contributions

- Two algorithms
- enclosure of the edges
- enclosure of the pixels
- Fast implicit curve and surface algorithms for high resolutions: faster than marching squares and marching cubes
- Better guarantees on the drawing than marching squares
- Ability to handle high degrees $(d>20)$ and high resolutions $(N>1000)$

Future work

- Can the thickness of the drawing be controlled?
- Could we have a faster subdivision with other root finding methods?
- Can the multipoint evaluation improve Plantinga and Vegter's algorithm?

Timing

A CAD approach: Isotop

Figure: Computation times for a Kac polynomials (in seconds)

