
Fast high-resolution drawing of algebraic curves and surfaces

Nuwan Herath Mudiyanselage
Thesis supervised by Guillaume Moroz and Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

June 2, 2023

Overview

1 Implicit curve drawing

2 Previous work

3 Our approach

4 Fast multipoint evaluation

5 Algorithms

6 Experiments

2 / 44

Implicit curve drawing

Scientific visualization

Some scientific visualization applications:

modeling

medical imaging

mechanism design

Goal: build an intuition and get an understanding of the data

3D CT reconstruction of distal tibia fracture

Industrial robots from KUKA by Mixabest
(CC BY-SA 3.0)

4 / 44

Implicit curve drawing problem
General problem

Discrete representation of an implicit curve on a fixed grid

Input:
▶ function F
▶ resolution N
▶ visualization window

Implicit curve defined as the solution set

{(x , y) ∈ R2 | F (x , y) = 0}

Output: drawing (set of pixels)
N

5 / 44

Implicit curve drawing problem
Our focus

Discrete representation of an algebraic curve on a fixed grid

Input:
▶ bivariate polynomial P of partial degree d
▶ resolution N
▶ window [−1, 1]× [−1, 1]

Algebraic curve defined as the solution set

{(x , y) ∈ R2 | P(x , y) = 0}

Output: drawing (set of pixels)

Goal : fast high-resolution drawing of high degree algebraic curves

d ≈ 100 −→ d2 ≈ 10, 000 monomials

N ≈ 1, 000

N

6 / 44

Correctness of the drawing

For numerical reasons, there may be some:

False negative pixels

False positive pixels

7 / 44

Correctness of the drawing

For numerical reasons, there may be some:

False negative pixels

False positive pixels

7 / 44

Previous work

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
The idea

2D variant of the widely used marching cubes algorithm [Lorensen & Cline, 1987]
Implicit curve defined by P(X ,Y) = 0

9 / 44

Marching squares
Complexity

Complexity (number of elementary operations)
Naive evaluation

θ(d2N2)

d partial degree
N resolution of the grid

Arithmetic complexity of the marching squares

With partial evaluation of P(x , y), assuming d < N

θ(dN2)

Slow for high resolutions. . .
Can we have an algorithm in O(dN)?

10 / 44

Adaptive subdivision

Local refinements of the grid

11 / 44

Adaptive subdivision

Local refinements of the grid

11 / 44

Adaptive subdivision

Local refinements of the grid

11 / 44

Adaptive subdivision

Local refinements of the grid

11 / 44

Adaptive subdivision

Local refinements of the grid

11 / 44

Methods providing topological correctness
Adaptive 2D subdivision with interval arithmetic

[Snyder, 1992]

[Plantinga & Vegter, 2004]

[Burr et al., 2008]

[Lin & Yap, 2011]

. . .

Cylindrical algebraic decomposition (CAD)

[Gonzalez-Vega & Necula, 2002]

[Eigenwillig et al., 2007]

[Alberti et al., 2008]

[Cheng et al., 2009]

[Kobel & Sagraloff, 2015]

[Diatta et al., 2018]

. . .

[Lin & Yap, 2011]

https://isotop.gamble.loria.fr/

12 / 44

https://isotop.gamble.loria.fr/

Our approach

A prerequisite
Interval arithmetic

For I = [I , I] and J = [J, J],

I + J = [I + J, I + J]

I − J = [I − J, I − J]

. . .

Evaluation of the function f (X) = X 2 −X = (X − 1)X on the interval [0, 2]

[0, 2]2 − [0, 2] = [0, 4]− [0, 2] = [−2, 4]

([0, 2]− 1) · [0, 2] = [−1, 1] · [0, 2] = [−2, 2]

14 / 44

A prerequisite
Interval arithmetic

For I = [I , I] and J = [J, J],

I + J = [I + J, I + J]

I − J = [I − J, I − J]

. . .

Evaluation of the function f (X) = X 2 −X = (X − 1)X on the interval [0, 2]

[0, 2]2 − [0, 2] = [0, 4]− [0, 2] = [−2, 4]

([0, 2]− 1) · [0, 2] = [−1, 1] · [0, 2] = [−2, 2]

14 / 44

Interval arithmetic
Inclusion property

P(X) = 2X 3 − X 2 − 1.5X + 0.75

How to compute P(I) for I = [−1, 1]?

−1 1

P(I) = [−0.75, 1.06 . . .]

x

P ′(x)

P(x)

−1 x1 =
1−

√
10

6 x2 =
1+

√
10

6
1

+ 0 − 0 +

P(−1)P(−1)

P(x1)P(x1)

P(x2)P(x2)

P(1)P(1)0

15 / 44

Interval arithmetic
Inclusion property

P(X) = 2X 3 − X 2 − 1.5X + 0.75

How to compute P(I) for I = [−1, 1]?

−1 1

P(I) = [−0.75, 1.06 . . .]

□P(I) = 2[−1, 1]3 − [−1, 1]2 − 1.5[−1, 1] + 0.75

= [−5.25, 5.25]

With Horner’s scheme:

□P(I) = ((2[−1, 1]− 1)[−1, 1]− 1.5)[−1, 1] + 0.75

= [−3.75, 5.25]

P(I) ⊆ □P(I)

15 / 44

Interval arithmetic
Inclusion property

P(X) = 2X 3 − X 2 − 1.5X + 0.75

How to compute P(I) for I = [−1, 1]?

−1 1

P(I) = [−0.75, 1.06 . . .]

□P(I) = 2[−1, 1]3 − [−1, 1]2 − 1.5[−1, 1] + 0.75

= [−5.25, 5.25]

With Horner’s scheme:

□P(I) = ((2[−1, 1]− 1)[−1, 1]− 1.5)[−1, 1] + 0.75

= [−3.75, 5.25]

P(I) ⊆ □P(I)

15 / 44

Interval arithmetic
Convergence property

Convergence at a point
With x ∈ [a, b]

lim
[a,b]−→[x,x]={x}

□P([a, b]) = P(x)

16 / 44

Our approach: guaranteed intersection with the grid

Marching squares Adaptive subdivision

New approach: evaluation along fibers

⇒ Make it fast and provide some guarantees

17 / 44

Two algorithms

Edge drawing

evaluation in X
Chebyshev nodes
multipoint evaluation with IDCT

subdivision in Y
naive root finding method

Guarantees
False positive and false negative pixels

Pixel drawing

evaluation in X
Chebyshev nodes
multipoint evaluation with IDCT
Taylor approximation

subdivision in Y
naive root finding method

Guarantees
False positive pixels only

18 / 44

Subdivisions along a fiber
P(xk ,Y) =

∑
ajY

j

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

P(x7,Y)

✓

✓

✓

19 / 44

Subdivisions along a fiber
P(xk ,Y) =

∑
ajY

j

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

P(x7,Y)

✓

✓

✓

19 / 44

Subdivisions along a fiber
P(xk ,Y) =

∑
ajY

j

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10P(x7,Y)

✓

✓

✓

19 / 44

Subdivisions along a fiber
P(xk ,Y) =

∑
ajY

j

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10P(x7,Y)

✓

✓

✓

19 / 44

Subdivisions along a fiber
P(xk ,Y) =

∑
ajY

j

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10P(x7,Y)

✓

✓

✓

19 / 44

An example

X 2 + Y 2 − 1 = 0

Resolution N = 64

20 / 44

Pixel lighting
Edge drawing

Detect a crossing between two consecutive nodes
of the grid

Light the adjacent pixels

21 / 44

Pixel lighting
Edge drawing

Detect a crossing between two consecutive nodes
of the grid

Light the adjacent pixels

21 / 44

Pixel lighting
Edge drawing

Detect a crossing between two consecutive nodes
of the grid

Light the adjacent pixels

21 / 44

Pixel lighting
Pixel drawing

Detect a crossing in pixel of the grid

Light that pixel

22 / 44

False positive and false negative pixels
Edge drawing

Some incorrect pixels:

False negative when a connected component
lies inside of a pixel

False positive when the evaluation on an edge
of a pixel is close to zero
That occurs for a segment S when

0 ∈ □P(S) + [−E ,E]

Certification of segments that are not crossed:

0 ̸∈ □P(S) + [−E ,E]

⇓
0 ̸∈ P(S)

23 / 44

False positive and false negative pixels
Edge drawing

Some incorrect pixels:

False negative when a connected component
lies inside of a pixel

False positive when the evaluation on an edge
of a pixel is close to zero
That occurs for a segment S when

0 ∈ □P(S) + [−E ,E]

Certification of segments that are not crossed:

0 ̸∈ □P(S) + [−E ,E]

⇓
0 ̸∈ P(S)

23 / 44

False positive and false negative pixels
Pixel drawing

Some incorrect pixels:

False negative when a connected component
lies inside of a pixel

False positive when the evaluation on an edge
of a pixel is close to zero
That occurs for a segment S when

0 ∈ □P(S) + [−E ,E]

Certification of segments that are not crossed:

0 ̸∈ □P(S) + [−E ,E]

⇓
0 ̸∈ P(S)

24 / 44

Fast multipoint evaluation

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ)

The first three Chebyshev polynomials

cos(0 · θ) = 1 T0 = 1

cos(1 · θ) = cos(θ) T1 = X

cos(2 · θ) = 2 cos(θ)2 − 1 T2 = 2X 2 − 1

Lemma
An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

p(X) =
d∑

k=0

αkTk(X)

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

26 / 44

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ)

Lemma
An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

p(X) =
d∑

k=0

αkTk(X)

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

26 / 44

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ)

Lemma
An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

p(X) =
d∑

k=0

αkTk(X)

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

26 / 44

A prerequisite to fast multipoint evaluation
Chebyshev nodes

Definition
For N ∈ N, the Chebyshev nodes are

cn = cos

(
2n + 1

2N
π

)
, n = 0, . . . ,N − 1

They are the roots of TN

c0c1c2c3c4c5

1−1

c5c5c5c5c5c5c5c5c5c5c5

1−1

c5

1−1

N = 6 N = 11 N = 20

27 / 44

Inverse Discrete Cosine Transform
Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

(αk) (Vk) (vk) (xk)
linear transformation FFT linear transformation

IDCT

⇒ Fast thanks to the Fast Fourier Transform (FFT) algorithm in O(N log2 N)

[Makhoul, 1980]

p(cn) =

28 / 44

Inverse Discrete Cosine Transform
Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

(αk) (Vk) (vk) (xk)
linear transformation FFT linear transformation

IDCT

⇒ Fast thanks to the Fast Fourier Transform (FFT) algorithm in O(N log2 N)

[Makhoul, 1980]

p(cn) =
N−1∑
k=0

αkTk

(
cos

(
2n + 1

2N
π

))

=
N−1∑
k=0

αk cos

[
πk(2n + 1)

2N

]

28 / 44

Inverse Discrete Cosine Transform
Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

(αk) (Vk) (vk) (xk)
linear transformation FFT linear transformation

IDCT

⇒ Fast thanks to the Fast Fourier Transform (FFT) algorithm in O(N log2 N)

[Makhoul, 1980]

p(cn) =
N−1∑
k=0

αkTk

(
cos

(
2n + 1

2N
π

))
=

N−1∑
k=0

αk cos

[
πk(2n + 1)

2N

]

28 / 44

Inverse Discrete Cosine Transform
Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

(αk) (Vk) (vk) (xk)
linear transformation FFT linear transformation

IDCT

⇒ Fast thanks to the Fast Fourier Transform (FFT) algorithm in O(N log2 N)

[Makhoul, 1980]

p(cn) =
1

2
α0 +

1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]
(p(cn))0≤n≤N−1 =

1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

28 / 44

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Theorem (H., Moroz, Pouget, 2022)

Assume radix-2, precision-p arithmetic, with rounding unit u = 2−p . Let x̂ be the
computed 2n-point IDCT of α ∈ C2n , and let x be the exact value. Then

∥x̂ − x∥∞ = n∥α∥∞O(u).

Table: IDCT error bounds for p = 53 (double precision)

N = 2n 1, 024 2, 048 4, 096 8, 192 16, 384 32, 768
∥x̂ − x∥∞/∥α∥∞ 7.97e-15 8.84e-15 9.72e-15 1.06e-14 1.15e-14 1.23e-14

29 / 44

Algorithms

General idea: edge enclosure
Illustration

P(X ,Y) =
∑(∑

ai,jX
i
)
Y j =

∑
pj(X)Y j

pj(X) =
∑

ai,jX
i =

∑
αi,jTi (X)

(pj(cn))0≤n≤N−1 =
1

2
(α0,j , . . . , α0,j) + IDCT((αk,j)0≤k≤N−1)

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9 P(c3,Y)

✓

✓

✓

31 / 44

General idea: edge enclosure
Illustration

P(cn,Y) =
∑

pj(cn)Y
j

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9

P(c3,Y)

✓

✓

✓

31 / 44

General idea: edge enclosure
Illustration

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9

P(c3,Y)

✓

✓

✓

31 / 44

General idea: edge enclosure
Illustration

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9

P(c3,Y)

✓

✓

✓

31 / 44

General idea: edge enclosure
Illustration

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9

P(c3,Y)

✓

✓

✓

31 / 44

General idea: edge enclosure
Illustration

P(c3,Y) =
∑

pj(c3)Y
j

c0c1c2c3c4c5c6c7c8c9

P(c3,Y)

✓

✓

✓

31 / 44

An edge enclosing algorithm

P(c0,Y)P(c1,Y)P(c2,Y)P(c3,Y)P(c4,Y)

P(cn, I1) P(cn, I2)

IDCT multipoint evaluation in X
at c0, c1 . . .

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

32 / 44

An edge enclosing algorithm

P(c0,Y)P(c1,Y)P(c2,Y)P(c3,Y)P(c4,Y)

P(cn, I1)

P(cn, I2)

IDCT multipoint evaluation in X
at c0, c1 . . .

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

32 / 44

An edge enclosing algorithm

P(c0,Y)P(c1,Y)P(c2,Y)P(c3,Y)P(c4,Y)

P(cn, I1) P(cn, I2)

IDCT multipoint evaluation in X
at c0, c1 . . .

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

32 / 44

General idea: pixel enclosure
Illustration

P(I ,Y) =
∑

pj(I)Y
j

P(I ,Y)

✓

✓

✓

33 / 44

General idea: pixel enclosure
Illustration

P(I ,Y) =
∑

pj(I)Y
j

P(I ,Y)

✓

✓

✓

33 / 44

General idea: pixel enclosure
Illustration

P(I ,Y) =
∑

pj(I)Y
j

P(I ,Y)

✓

✓

✓

33 / 44

General idea: pixel enclosure
Illustration

P(I ,Y) =
∑

pj(I)Y
j

P(I ,Y)

✓

✓

✓

33 / 44

A pixel enclosing algorithm

P(Ic0 ,Y)P(Ic1 ,Y)P(Ic2 ,Y)P(Ic3 ,Y)P(Ic4 ,Y)

Ic2

P(Icn , I1)

Icn

P(Icn , I
1
2)

P(Icn , I
2
2)

Icn

IDCT multipoint evaluation in X
around c0, c1 . . .

subdivision in Y

Taylor expansion of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

∣∣∣∣p(cn + r)−
(
p(cn) + rp′(cn) + · · ·+ rm

m!
p(m)(cn)

)∣∣∣∣ ≤ max
Icn

∣∣∣p(m+1)
∣∣∣ |r |(m+1)

(m + 1)!

34 / 44

A pixel enclosing algorithm

P(Ic0 ,Y)P(Ic1 ,Y)P(Ic2 ,Y)P(Ic3 ,Y)P(Ic4 ,Y)

Ic2

P(Icn , I1)

Icn

P(Icn , I
1
2)

P(Icn , I
2
2)

Icn

IDCT multipoint evaluation +
Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

∣∣∣∣p(cn + r)−
(
p(cn) + rp′(cn) + · · ·+ rm

m!
p(m)(cn)

)∣∣∣∣ ≤ max
Icn

∣∣∣p(m+1)
∣∣∣ |r |(m+1)

(m + 1)!

34 / 44

A pixel enclosing algorithm

P(Ic0 ,Y)P(Ic1 ,Y)P(Ic2 ,Y)P(Ic3 ,Y)P(Ic4 ,Y)

Ic2

P(Icn , I1)

Icn

P(Icn , I
1
2)

P(Icn , I
2
2)

Icn

IDCT multipoint evaluation +
Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

∣∣∣∣p(cn + r)−
(
p(cn) + rp′(cn) + · · ·+ rm

m!
p(m)(cn)

)∣∣∣∣ ≤ max
Icn

∣∣∣p(m+1)
∣∣∣ |r |(m+1)

(m + 1)!

34 / 44

A pixel enclosing algorithm

P(Ic0 ,Y)P(Ic1 ,Y)P(Ic2 ,Y)P(Ic3 ,Y)P(Ic4 ,Y)

Ic2

P(Icn , I1)

Icn

P(Icn , I
1
2)

P(Icn , I
2
2)

Icn

IDCT multipoint evaluation +
Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of P(X ,Y) =
∑

pj(X)Y j

∣∣∣∣p(cn + r)−
(
p(cn) + rp′(cn) + · · ·+ rm

m!
p(m)(cn)

)∣∣∣∣ ≤ max
Icn

∣∣∣p(m+1)
∣∣∣ |r |(m+1)

(m + 1)!

34 / 44

Complexities

Arithmetic complexities

multipoint evaluation and subdivision O(d3 + dN log2(N) + dNT)

multipoint Taylor approximation and subdivision O(md3 + mdN log2(N) + dNT)

d partial degree
N resolution
T maximum number of nodes of the subdivision trees over all vertical fibers / stripes

With a constant number of branches in the window, we expect T = O(log2(N))

35 / 44

Experiments

Pixel classification

crossed: blue

not crossed: whitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhite

undecided: yellow

37 / 44

Drawing for two families of polynomials

Experiments on smooth curves −→ random polynomials
ξi,j : random coefficients in [−100, 100]

Kac polynomial

P(X ,Y) =
∑d

i+j=0 ξi,jX
iY j

Kostlan-Shub-Smale (KSS) polynomial

P(X ,Y) =
∑d

i+j=0

√
d!

i!j!(d−i−j)!ξi,jX
iY j

38 / 44

Drawing for two families of polynomials

(a) (b)

Figure: Kac polynomial of degree d = 110 at a resolution N = 1, 024, b
b+y

= 24%

39 / 44

Drawing for two families of polynomials

(a) (b)

Figure: KSS polynomial of degree d = 40 at a resolution N = 1, 024, b
b+y

= 19%

40 / 44

Comparison to state-of-the-art software

Our methods

edge drawing → curve enclosing edges false positive and false negative

pixel drawing → curve enclosing pixels false positive

Some similar methods

scikit / NumPy → marching squares false negative

MATLAB → could not find the method used false negative?

ImplicitEquations → 2D adaptive subdivision false positive

A topologically correct method

Isotop → cylindrical algebraic decomposition

41 / 44

Timing
Comparison for a polynomial

lo
ga
ri
th
m
ic

sc
al
e

128 1024 8192 32768

10

100

1000
timeout

3.1
4.3

11

47

3.2
4.6

11

50

5.8 6.1
12

116

20

651
900 900900 900 900 900

81 81 81 81

N

t
edge drawing
pixel drawing
scikit / NumPy

MATLAB
ImplicitEquations

Isotop

Computation times for a Kac polynomial of degree 40 (in seconds)

scikit: O(dN2)

no guarantee
slow when d and N are large

Our methods: O(dNT)
as expected T = O(log2(N))

guarantees
fast when d and N are large

42 / 44

Timing
Comparison for a polynomial

lo
ga
ri
th
m
ic

sc
al
e

128 1024 8192 32768

10

100

1000
timeout

3.1
4.3

11

47

3.2
4.6

11

50

5.8 6.1
12

116

20

651
900 900900 900 900 900

81 81 81 81

N

t
edge drawing
pixel drawing
scikit / NumPy

MATLAB
ImplicitEquations

Isotop

Computation times for a Kac polynomial of degree 40 (in seconds)

scikit: O(dN2)

no guarantee
slow when d and N are large

Our methods: O(dNT)
as expected T = O(log2(N))

guarantees
fast when d and N are large

42 / 44

Output for a singular curve

Curve: dfold8,1 from Challenge 14 of Oliver Labs[13][37] (d = 18)

Isotop Pixel drawing

43 / 44

Conclusion

Contributions

Two algorithms
▶ enclosure of the edges
▶ enclosure of the pixels

Fast implicit curve and surface algorithms for high resolutions: faster than marching
squares and marching cubes

Better guarantees on the drawing than marching squares

Ability to handle high degrees (d > 20) and high resolutions (N > 1000)

Future work

Can the thickness of the drawing be controlled?

Could we have a faster subdivision with other root finding methods?

Can the multipoint evaluation improve Plantinga and Vegter’s algorithm?

44 / 44

Timing
A CAD approach: Isotop

lo
ga
ri
th
m
ic

sc
al
e

20 30 40 50 100

10

100

1000

timeout

2.3

18

81

1,603 2,000

21 18 22 23 2831
22 27 25 30

d

t
Isotop

edge drawing for N = 16384
pixel drawing for N = 16384

Figure: Computation times for a Kac polynomials (in seconds)

1 / 1

	Implicit curve drawing
	Previous work
	Our approach
	Fast multipoint evaluation
	Algorithms
	Experiments
	Appendix

