Fast high-resolution drawing of algebraic curves and surfaces

Nuwan Herath Mudiyanselage Thesis supervised by Guillaume Moroz and Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

June 2, 2023

Overview

- Implicit curve drawing
- Previous work
- Our approach
- Fast multipoint evaluation
- 6 Algorithms
- **6** Experiments

Scientific visualization

Some scientific visualization applications:

- modeling
- medical imaging
- mechanism design

Goal: build an intuition and get an understanding of the data

3D CT reconstruction of distal tibia fracture

Industrial robots from KUKA by Mixabest (CC BY-SA 3.0)

Implicit curve drawing problem

General problem

Discrete representation of an implicit curve on a fixed grid

- Input:
 - ▶ function *F*
 - resolution N
 - visualization window

Implicit curve defined as the solution set

$$\{(x,y)\in\mathbb{R}^2\mid F(x,y)=0\}$$

Output: drawing (set of pixels)

Implicit curve drawing problem

Our focus

Discrete representation of an algebraic curve on a fixed grid

- Input:
 - ▶ bivariate polynomial P of partial degree d
 - ► resolution *N*
 - window $[-1,1] \times [-1,1]$

Algebraic curve defined as the solution set

$$\{(x,y)\in\mathbb{R}^2\mid P(x,y)=0\}$$

• Output: drawing (set of pixels)

Goal: fast high-resolution drawing of high degree algebraic curves

- $d \approx 100$ $\longrightarrow d^2 \approx 10,000$ monomials
- $N \approx 1,000$

Correctness of the drawing

For numerical reasons, there may be some:

• False negative pixels

Correctness of the drawing

For numerical reasons, there may be some:

- False negative pixels
- False positive pixels

The idea

The idea

The idea

Complexity

Complexity (number of elementary operations)

Naive evaluation

 $\theta(d^2N^2)$

d partial degreeN resolution of the grid

Arithmetic complexity of the marching squares

With partial evaluation of P(x, y), assuming d < N

 $\theta(dN^2)$

Slow for high resolutions. . .

Can we have an algorithm in O(dN)?

Methods providing topological correctness

Adaptive 2D subdivision with interval arithmetic

- [Snyder, 1992]
- [Plantinga & Vegter, 2004]
- [Burr et al., 2008]
- [Lin & Yap, 2011]
- ..

Cylindrical algebraic decomposition (CAD)

- [Gonzalez-Vega & Necula, 2002]
- [Eigenwillig et al., 2007]
- [Alberti et al., 2008]
- [Cheng et al., 2009]
- [Kobel & Sagraloff, 2015]
- [Diatta et al., 2018]
- . .

[Lin & Yap, 2011]

https://isotop.gamble.loria.fr/

A prerequisite

Interval arithmetic

For $I = [\underline{I}, \overline{I}]$ and $J = [\underline{J}, \overline{J}]$,

- $I + J = [\underline{I} + \underline{J}, \overline{I} + \overline{J}]$
- $I J = [\underline{I} \overline{J}, \overline{I} \underline{J}]$
- . .

A prerequisite

Interval arithmetic

For $I = [\underline{I}, \overline{I}]$ and $J = [\underline{J}, \overline{J}]$,

- $I + J = [\underline{I} + \underline{J}, \overline{I} + \overline{J}]$
- $I J = [\underline{I} \overline{J}, \overline{I} \underline{J}]$
- ...

Evaluation of the function $f(X) = X^2 - X = (X - 1)X$ on the interval [0, 2]

- $[0,2]^2 [0,2] = [0,4] [0,2] = [-2,4]$
- $\bullet \ ([0,2]-1)\cdot [0,2] = [-1,1]\cdot [0,2] = [-2,2]$

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

X	-1		$x_1 = \frac{1 - \sqrt{10}}{6}$		$x_2 = \frac{1+\sqrt{10}}{6}$		1
P'(x)		+	0	-	0	+	
P(x)	P(-1)		$P(x_1)$		0 P(x ₂)		P(1)

$$P(I) = [-0.75, 1.06...]$$

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

$$\Box P(I) = 2[-1,1]^3 - [-1,1]^2 - 1.5[-1,1] + 0.75$$

= [-5.25,5.25]

$$P(I) = [-0.75, 1.06...]$$

Inclusion property

$$P(X) = 2X^3 - X^2 - 1.5X + 0.75$$

How to compute P(I) for I = [-1, 1]?

$$P(I) = [-0.75, 1.06...]$$

$$\Box P(I) = 2[-1,1]^3 - [-1,1]^2 - 1.5[-1,1] + 0.75$$

= [-5.25, 5.25]

With Horner's scheme:

$$\square P(I) = ((2[-1,1]-1)[-1,1]-1.5)[-1,1]+0.75$$
$$= [-3.75, 5.25]$$

$$P(I) \subseteq \Box P(I)$$

Convergence property

Convergence at a point

With
$$x \in [a, b]$$

$$\lim_{[a,b]\longrightarrow[x,x]=\{x\}}\Box P([a,b])=P(x)$$

Our approach: guaranteed intersection with the grid

Marching squares

Adaptive subdivision

New approach: evaluation along fibers

⇒ Make it fast and provide some guarantees

Two algorithms

Edge drawing

- evaluation in X
 Chebyshev nodes
 multipoint evaluation with IDCT
- subdivision in Y
 naive root finding method

Guarantees
False positive and false negative pixels

Pixel drawing

- evaluation in X
 Chebyshev nodes
 multipoint evaluation with IDCT
 Taylor approximation
- subdivision in Y naive root finding method

Guarantees
False positive pixels only

$$P(x_k, Y) = \sum a_j Y^j$$

Subdivisions along a fiber

$$P(x_k, Y) = \sum a_j Y^j$$

An example

$$X^2 + Y^2 - 1 = 0$$

Resolution N = 64

Pixel lighting Edge drawing

Pixel lighting Edge drawing

 Detect a crossing between two consecutive nodes of the grid

Pixel lighting Edge drawing

- Detect a crossing between two consecutive nodes of the grid
- Light the adjacent pixels

Pixel lighting Pixel drawing

- Detect a crossing in pixel of the grid
- Light that pixel

False positive and false negative pixels Edge drawing

Some incorrect pixels:

• False negative when a connected component lies inside of a pixel

False positive and false negative pixels Edge drawing

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel
- False positive when the evaluation on an edge of a pixel is close to zero
 That occurs for a segment S when

$$0 \in \Box P(S) + [-E, E]$$

Certification of segments that are not crossed:

$$0 \not\in \Box P(S) + [-E, E]$$

$$\downarrow \downarrow$$

$$0 \not\in P(S)$$

False positive and false negative pixels Pixel drawing

Some incorrect pixels:

- False negative when a connected component lies inside of a pixel
- False positive when the evaluation on an edge of a pixel is close to zero
 That occurs for a segment S when

$$0 \in \Box P(S) + [-E, E]$$

Certification of segments that are not crossed:

$$0 \not\in \Box P(S) + [-E, E]$$

$$\downarrow \downarrow$$

$$0 \not\in P(S)$$

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

The first three Chebyshev polynomials

$$\cos(0 \cdot \theta) = 1$$
 $T_0 = 1$
 $\cos(1 \cdot \theta) = \cos(\theta)$ $T_1 = X$
 $\cos(2 \cdot \theta) = 2\cos(\theta)^2 - 1$ $T_2 = 2X^2 - 1$

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

Chebyshev polynomials

Definition

The Chebyshev polynomials (T_k) verify $\forall k \in \mathbb{N}, T_k(\cos \theta) = \cos(k\theta)$

Lemma

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$p(X) = \sum_{k=0}^{d} \alpha_k T_k(X)$$

Lemma

For $N \in \mathbb{N}$, a polynomial p of degree d can be evaluated on the Chebyshev nodes $(c_n)_{0 \le n \le N-1}$ using the IDCT:

$$(\rho(c_n))_{0\leq n\leq N-1}=\frac{1}{2}(\alpha_0,\ldots,\alpha_0)+\mathsf{IDCT}((\alpha_k)_{0\leq k\leq N-1})$$

Chebyshev nodes

Definition

For $N \in \mathbb{N}$, the Chebyshev nodes are

$$c_n = \cos\left(\frac{2n+1}{2N}\pi\right), \ n=0,\ldots,N-1$$

They are the roots of T_N

$$N = 11$$

$$N = 20$$

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \to x_n$

$$x_n = \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

IDCT

linear transformation
$$(\alpha_k) - \cdots \rightarrow (V_k) \xrightarrow{\mathsf{FFT}} (v_k) - \cdots \rightarrow (x_k)$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$

[Makhoul, 1980]

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \to x_n$

$$x_n = \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

IDCT

| linear transformation | FFT | linear transformation | $(\alpha_k) - - - \rightarrow (V_k) \longrightarrow (v_k) - - - \rightarrow (x_k)$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos \left(\frac{2n+1}{2N} \pi \right) \right)$$

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \to x_n$

$$x_n = \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

IDCT

| linear transformation | FFT | linear transformation | $(\alpha_k) - - - \rightarrow (V_k) \longrightarrow (v_k) - - - \rightarrow (x_k)$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \sum_{k=0}^{N-1} \alpha_k T_k \left(\cos \left(\frac{2n+1}{2N} \pi \right) \right) = \sum_{k=0}^{N-1} \alpha_k \cos \left[\frac{\pi k (2n+1)}{2N} \right]$$

Inverse Discrete Cosine Transform (IDCT): $\alpha_k \to x_n$

$$x_n = \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$

IDCT

$$(\alpha_k) - - - \rightarrow (V_k) \xrightarrow{\mathsf{FFT}} (v_k) - - - - \rightarrow (x_k)$$

 \Rightarrow Fast thanks to the Fast Fourier Transform (FFT) algorithm in $O(N \log_2 N)$ [Makhoul, 1980]

$$p(c_n) = \frac{1}{2}\alpha_0 + \frac{1}{2}\alpha_0 + \sum_{k=1}^{N-1} \alpha_k \cos\left[\frac{\pi k(2n+1)}{2N}\right]$$
$$(p(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_0, \dots, \alpha_0) + \mathsf{IDCT}((\alpha_k)_{0 \le k \le N-1})$$

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Theorem (H., Moroz, Pouget, 2022)

Assume radix-2, precision-p arithmetic, with rounding unit $u=2^{-p}$. Let \widehat{x} be the computed 2^n -point IDCT of $\alpha\in\mathbb{C}^{2^n}$, and let x be the exact value. Then

$$\|\widehat{x} - x\|_{\infty} = n\|\alpha\|_{\infty} O(u).$$

Table: IDCT error bounds for p = 53 (double precision)

$N=2^n$	1,024	2,048	4,096	8,192	16,384	32,768
$\ \widehat{\mathbf{x}} - \mathbf{x}\ _{\infty} / \ \alpha\ _{\infty}$	7.97e-15	8.84e-15	9.72e-15	1.06e-14	1.15e-14	1.23e-14

$$P(X,Y) = \sum \left(\sum a_{i,j}X^i\right)Y^j = \sum p_j(X)Y^j$$

$$p_j(X) = \sum a_{i,j}X^i = \sum \alpha_{i,j}T_i(X)$$

$$(p_j(c_n))_{0 \le n \le N-1} = \frac{1}{2}(\alpha_{0,j}, \dots, \alpha_{0,j}) + \mathsf{IDCT}((\alpha_{k,j})_{0 \le k \le N-1})$$

$$P(c_n, Y) = \sum p_j(c_n)Y^j$$

$$P(c_3, Y) = \sum p_j(c_3)Y^j$$

An edge enclosing algorithm

IDCT multipoint evaluation in X at $c_0, c_1 \dots$

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X,Y) = \sum p_j(X)Y^j$

An edge enclosing algorithm

IDCT multipoint evaluation in X at $c_0, c_1 \dots$

subdivision in Y

IDCT multipoint evaluation of the partial polynomials of $P(X,Y) = \sum p_j(X)Y^j$

An edge enclosing algorithm

IDCT multipoint evaluation of the partial polynomials of $P(X,Y) = \sum p_j(X)Y^j$

$$P(I,Y) = \sum p_j(I)Y^j$$

$$P(I,Y) = \sum p_j(I)Y^j$$

$$P(I,Y) = \sum p_j(I)Y^j$$

$$P(I, Y) = \sum p_j(I)Y^j$$

A pixel enclosing algorithm

IDCT multipoint evaluation in X around $c_0, c_1 \dots$

subdivision in Y

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \leq \max_{l_{c_n}} \left| p^{(m+1)} \left| \frac{|r|^{(m+1)}}{(m+1)!} \right|$$

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X,Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \leq \max_{l_{c_n}} \left| p^{(m+1)} \right| \frac{|r|^{(m+1)}}{(m+1)!}$$

A pixel enclosing algorithm

IDCT multipoint evaluation + Taylor approximation in X

subdivision in Y

Taylor expansion of the partial polynomials of $P(X, Y) = \sum p_j(X)Y^j$

$$\left| p(c_n + r) - \left(p(c_n) + rp'(c_n) + \dots + \frac{r^m}{m!} p^{(m)}(c_n) \right) \right| \leq \max_{l_{c_n}} \left| p^{(m+1)} \right| \frac{|r|^{(m+1)}}{(m+1)!}$$

Complexities

Arithmetic complexities

multipoint evaluation and subdivision $O(-d^3 + -dN \log_2(N) + dNT)$

multipoint Taylor approximation and subdivision $O(md^3 + mdN \log_2(N) + dNT)$

d partial degree

N resolution

T maximum number of nodes of the subdivision trees over all vertical fibers / stripes

With a constant number of branches in the window, we expect $T = O(\log_2(N))$

Pixel classification

• crossed: blue

o not crossed: white

undecided: yellow

Drawing for two families of polynomials

Experiments on smooth curves \longrightarrow random polynomials $\xi_{i,j}$: random coefficients in [-100,100]

Kac polynomial

Kostlan-Shub-Smale (KSS) polynomial

Drawing for two families of polynomials

Figure: Kac polynomial of degree d=110 at a resolution $N=1,024, \frac{b}{b+v}=24\%$

Drawing for two families of polynomials

Figure: KSS polynomial of degree d=40 at a resolution N=1,024, $\frac{b}{b+v}=19\%$

Comparison to state-of-the-art software

Our methods

- edge drawing → curve enclosing edges
- ullet pixel drawing o curve enclosing pixels

false positive and false negative false positive

Some similar methods

- scikit / NumPy → marching squares
- ullet MATLAB o could not find the method used
- ullet ImplicitEquations o 2D adaptive subdivision

false negative?
false positive

A topologically correct method

ullet Isotop o cylindrical algebraic decomposition

Timing

Comparison for a polynomial

Computation times for a **Kac** polynomial of degree 40 (in seconds)

Timing

Comparison for a polynomial

Computation times for a Kac polynomial of degree 40 (in seconds)

scikit: $O(dN^2)$

Our methods: O(dNT) as expected $T = O(\log_2(N))$

no guarantee slow when d and N are large

Output for a singular curve

Curve: $dfold_{8,1}$ from Challenge 14 of Oliver Labs[13][37] (d = 18)

Conclusion

Contributions

- Two algorithms
 - enclosure of the edges
 - enclosure of the pixels
- Fast implicit curve and surface algorithms for high resolutions: faster than marching squares and marching cubes
- Better guarantees on the drawing than marching squares
- Ability to handle high degrees (d > 20) and high resolutions (N > 1000)

Future work

- Can the thickness of the drawing be controlled?
- Could we have a faster subdivision with other root finding methods?
- Can the multipoint evaluation improve Plantinga and Vegter's algorithm?

Timing

A CAD approach: Isotop

Figure: Computation times for a Kac polynomials (in seconds)