Reinforced Set Projection Algorithm

Nuwan Herath Mudiyanselage with Luc Jaulin and Simon Rohou

ROBEX
ENSTA Bretagne, Lab-STICC

June 6, 2024

Set description

Set projection

$$
\begin{array}{rlrl}
\text { Proj }: \mathbb{R}^{m} & \rightarrow \mathbb{R}^{n} & n<m \\
\mathbb{X} & \mapsto \operatorname{Proj} \mathbb{X} &
\end{array}
$$

$\left.\operatorname{Proj} \mathbb{X}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \exists\left(x_{n+1}, \ldots, x_{m}\right),\left(x_{1}, \ldots, x_{n}, x_{n+1}, \ldots, x_{m}\right) \in \mathbb{X}\right)\right\}$

Reinforced Set Projection Algorithm

Goal:

- describe the projection with interval arithmetic
- propose an algorithm (better than the current one)

Set description with interval arithmetic: contractors

Set description with interval arithmetic: contractors

Set description with interval arithmetic: contractors

A naive contractor implementation

- bisection
- evaluation of each small box

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2}-1 \\
\mathbb{X}=\{(x, y) \mid f(x, y) \leq 0\}
\end{gathered}
$$

$f\left(\left[\mathbf{x}_{\mathbf{i}}\right]\right)>0 \rightarrow$ outside of \mathbb{X}

- merge the boxes that are not clearly outside

Set description with interval arithmetic: contractors

$\mathcal{C}_{\mathbb{X}}:$ contractor for the set \mathbb{X}

$$
\begin{array}{rr}
\mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \subset[\mathbf{x}] & \text { contractance } \\
\mathcal{C}_{\mathbb{X}}([\mathbf{x}]) \cap \mathbb{X}=[\mathbf{x}] \cap \mathbb{X} & \text { correctness }
\end{array}
$$

Set description with interval arithmetic: separators

$\mathcal{S}_{\mathbb{X}}$: separator for the set \mathbb{X}

$$
\mathcal{S}_{\mathbb{X}}([\mathbf{x}])=\left(\left[\mathbf{x}_{1}\right],\left[\mathbf{x}_{2}\right]\right) \text { and }\left[\mathbf{x}_{1}\right] \cup\left[\mathbf{x}_{2}\right]=[\mathbf{x}]
$$

$$
\left[\mathrm{x}_{1}\right] \subset[\mathrm{x}]
$$

$$
\left[\mathbf{x}_{1}\right] \cap \mathbb{X}=[\mathbf{x}] \cap \mathbb{X}
$$

$$
\left[x_{2}\right] \subset[x]
$$

$$
\left[\mathbf{x}_{2}\right] \cap \overline{\mathbb{X}}=[\mathbf{x}] \cap \overline{\mathbb{X}}
$$

Set description with interval arithmetic: separators

$\mathcal{S}_{\mathbb{X}}$: separator for the set \mathbb{X}

$$
\mathcal{S}_{\mathbb{X}}([\mathbf{x}])=\left(\left[\mathbf{x}_{1}\right],\left[\mathbf{x}_{2}\right]\right) \text { and }\left[\mathbf{x}_{1}\right] \cup\left[\mathbf{x}_{2}\right]=[\mathbf{x}]
$$

$$
\left[\mathrm{x}_{1}\right] \subset[\mathrm{x}]
$$

$$
\left[x_{1}\right] \cap \mathbb{X}=[x] \cap \mathbb{X}
$$

$$
\begin{gathered}
{\left[\mathrm{x}_{2}\right] \subset[\mathrm{x}]} \\
{\left[\mathrm{x}_{2}\right] \cap \overline{\mathbb{X}}=[\mathrm{x}] \cap \overline{\mathbb{X}}}
\end{gathered}
$$

Set projection

Set projection separator

SepProj in the Codac library

$$
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x^{2}+2.2 x y+x z+y^{2}+z^{2} \leq 10\right\}
$$

Projection onto the $x y$-plane: $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

Current projection algorithm: its aim

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its aim

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its aim

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its aim

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its aim

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Paving the projection space

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want $\mathcal{S}_{\text {Proj X }}$

We construct f such that
$\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Paving the projection space

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want $\mathcal{S}_{\text {Proj X }}$

We construct f such that
$\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Current projection algorithm: its main steps

What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}}\right)$

Back to the example

$$
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x^{2}+2.2 x y+x z+y^{2}+z^{2} \leq 10\right\}
$$

Projection onto the $x y$-plane: $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

$$
\varepsilon_{x y}=0.03
$$

$$
\varepsilon_{z}=0.03
$$

$\varepsilon_{z}=0.015$

$\varepsilon_{z}=0.003$

Comparison to the new approach

$$
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2 x^{2}+2.2 x y+x z+y^{2}+z^{2} \leq 10\right\}
$$

Projection onto the $x y$-plane: $\mathbb{R}^{3} \longrightarrow \mathbb{R}^{2}$

SepProj

New approach

Reinforcing the set projection

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}} \mathcal{C}_{\partial \text { Proj } \mathbb{X}}\right)$

Reinforcing the set projection

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}} \mathcal{C}_{\partial \text { Proj } \mathbb{X}}\right)$

Reinforcing the set projection

Assuming that \mathbb{X} is a differentiable set

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{X}}$

What we want
$\mathcal{S}_{\text {Proj X }}$

We construct f such that $\mathcal{S}_{\text {Proj } \mathbb{X}}=f\left(\mathcal{S}_{\mathbb{X}} \mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}\right)$

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{M}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{M}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

What we have
$\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\mathbb{X}}$ and $\mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{M}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{M}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj } \mathbb{M}}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj }}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

> What we have $\mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}}, \mathcal{C}_{\overline{\mathbb{X}}}$ and $\mathcal{C}_{\partial \text { Proj }}$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

$$
\begin{aligned}
& \text { What we have } \\
& \mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}} \text { nd } \mathcal{C}_{\partial \text { Pro } \mathbb{X}}
\end{aligned}
$$

1 Contraction
2 Color from neighbors or
Color from separation

Reinforced set projection: a new paving algorithm

$$
\begin{aligned}
& \text { What we have } \\
& \mathcal{S}_{\mathbb{X}}=\mathcal{C}_{\mathbb{X}} \mathcal{C}_{\overline{\mathbb{X}}} \text { nd } \mathcal{C}_{\partial \text { Pro } \mathbb{X}}
\end{aligned}
$$

1 Contraction
2 Color from neighbors or
Color from separation

Usage of projection separators

Using SepProj

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+2.2 x y+x z+y^{2}+z^{2}-10 \\
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z) \leq 0\right\} \sim \mathcal{S}_{\mathbb{X}}
\end{gathered}
$$

Using SepProj

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+2.2 x y+x z+y^{2}+z^{2}-10 \\
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z) \leq 0\right\} \sim \mathcal{S}_{\mathbb{X}}
\end{gathered}
$$

```
from codac import *
# ...
f = Function("x", "y", "z", "2*sqr(x) + 2.2*x*y + x*z + sqr(y) + sqr(z) - 10")
sep_X = SepFunction(f,[-oo,0])
```


Using SepProj

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+2.2 x y+x z+y^{2}+z^{2}-10 \\
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z) \leq 0\right\} \sim \mathcal{S}_{\mathbb{X}}
\end{gathered}
$$

$\operatorname{Proj}_{z \in[-10,10]} \mathbb{X}=\left\{(x, y) \in \mathbb{R}^{2} \mid z \in[-10,10],(x, y, z) \in \mathbb{X}\right\} \sim \mathcal{S}_{\operatorname{Proj}_{z \in[-10,10]} \mathbb{X}}$

$$
\varepsilon_{x y}=0.03, \varepsilon_{z}=0.015
$$

```
from codac import *
# ...
f = Function("x", "y", "z", "2*sqr(x) + 2.2*x*y + x*z + sqr(y) + sqr(z) - 10")
sep_X = SepFunction(f,[-oo,0])
sep_projX = SepProj(sep_X, Interval(-10, 10), 0.015)
```


Using SepProj

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+2.2 x y+x z+y^{2}+z^{2}-10 \\
\mathbb{X}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z) \leq 0\right\} \sim \mathcal{S}_{\mathbb{X}}
\end{gathered}
$$

$\operatorname{Proj}_{z \in[-10,10]} \mathbb{X}=\left\{(x, y) \in \mathbb{R}^{2} \mid z \in[-10,10],(x, y, z) \in \mathbb{X}\right\} \sim \mathcal{S}_{\operatorname{Proj}_{z \in[-10,10]} \mathbb{X}}$

$$
\varepsilon_{x y}=0.03, \varepsilon_{z}=0.015
$$

```
from codac import *
# ...
f = Function("x", "y", "z", "2*sqr(x) + 2.2*x*y + x*z + sqr(y) + sqr(z) - 10")
sep_X = SepFunction(f,[-oo,0])
sep_projX = SepProj(sep_X, Interval(-10, 10), 0.015)
# ...
SIVIA([[-5, -2],[4.5,7.5]], sep_projX, 0.03)
```


Using SepProj

Execution time: 22 s

Using the new SepProj

$$
\begin{gathered}
f(x, y, z)=2 x^{2}+2.2 x y+x z+y^{2}+z^{2}-10 \\
\frac{\partial f}{\partial z}(x, y, z)=x+2 z \\
\mathcal{S}_{\mathbb{X}}, \mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}} \longrightarrow \mathcal{S}_{\operatorname{Proj}_{z \in[-10,10]} \mathbb{X}} \\
\varepsilon_{x y}=\varepsilon_{z}=0.03
\end{gathered}
$$

```
from codac import *
# ...
f = Function("x", "y", "z", "2*sqr(x) + 2.2*x*y + x*z + sqr(y) + sqr(z) - 10")
sep_projX = NewSepProj(sep_X, ctc_boundary, Interval(-10, 10))
# ...
SIVIA([[-5, -2],[4.5,7.5]], sep_projx, 0.03)
```


Using the new SepProj

Execution time: 12 s

Fake boundaries

$$
\mathbb{X}=\{(x, y, z) \mid-0.3 \leq f(x, y, z) \leq 0\}
$$

Execution time: 14 s

Conclusion

Contributions

- $\mathcal{S}_{\mathbb{X}}$ is reinforced with $\mathcal{C}_{\partial \operatorname{Proj} \mathbb{X}}$
- We proposed a new paving algorithm based on that
- It gets colors from neighboring boxes when it is possible
- It is fast...
- ... but can spend time on fake boundaries

Future work

- Formalize and combine reinforced separators (intersection, union...)

