Fast High-Resolution Drawing of Algebraic Curves

Nuwan Herath Mudiyanselage
Guillaume Moroz, Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

ISSAC 2022
July 4-7, 2022

Implicit curve drawing

Implicit curve drawing problem

Discrete representation of an algebraic curve on a fixed grid

- Input: bivariate polynomial P of partial degree d, resolution N

$$
P(x, y)=\sum_{i=0}^{d} \sum_{j=0}^{d} a_{i, j} x^{i} y^{j}
$$

Implicit curve defined as the solution set

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid P(x, y)=0\right\}
$$

- Output: drawing (set of pixels)

Goal: fast high-resolution drawing of high degree algebraic curves

- $d \approx 100$
- $N \approx 1000$

Previous work: Marching squares, adaptative subdivision, CAD

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

The idea
2D variant of the widely used Marching cubes algorithm Implicit equation: $P(x, y)=0$

Marching squares

Complexity

Complexity (number of elementary operations)
Naive evaluation

$$
O\left(d^{2} N^{2}\right)
$$

d partial degree
N resolution of the grid

With partial evaluation of $P(x, y)$, assuming $d<N$

$$
O\left(d N^{2}\right)
$$

Slow for high resolutions...

Methods providing topological correctness

Adaptative 2D subdivision and interval arithmetic

- [Snyder, 1992]
- [Plantinga \& Vegter, 2004]
- [Burr et al., 2008]
- [Lin \& Yap, 2011]

Cylindrical algebraic decomposition (CAD)

- [Gonzalez-Vega \& Necula, 2002]
- [Eigenwillig et al., 2007]
- [Alberti et al., 2008]
- [Cheng et al., 2009]
- [Kobel \& Sagraloff, 2015]
- [Diatta et al., 2018]

Our approach: guaranteed intersection with the grid

Our approach

Evaluation on intersections of the grid

Evaluation along fibers

\Rightarrow Make it fast and provide some guarantees

Our approach

Evaluation on intersections of the grid

Evaluation along fibers

\Rightarrow Make it fast and provide some guarantees

Interval arithmetic

$\square p$ is an interval extension of p if on an interval / it verifies

$$
\square p(I) \supseteq p(I) .
$$

An example

$$
x^{2}+y^{2}-1=0
$$

Resolution $N=64$

Intersection detection

Intersection detection

- Detect a crossing between two consecutive nodes of the grid

Intersection detection

- Detect a crossing between two consecutive nodes of the grid
- Light the adjacent pixels

Intersection detection

- Detect a crossing between two consecutive nodes of the grid
- Light the adjacent pixels
- Exclude a segment S if

$$
0 \notin \square p(S)+[-E, E]
$$

where

$$
\begin{cases}p(y) & =\sum_{i=0}^{d} a_{i} y^{i} \\ E & =d^{2}\|a\|_{\infty}\left(d^{2}+N \log _{2}(N)\right) O(u)\end{cases}
$$

Intersection detection

Some incorrect pixels:

- False positive when the evaluation on an edge of a pixel is close to zero

Intersection detection

Some incorrect pixels:

- False positive when the evaluation on an edge of a pixel is close to zero
- False negative when a connected component lies inside of a pixel

Fast multipoint evaluation at Chebyshev nodes

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

The Chebyshev polynomials $\left(T_{k}\right)$ verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$.
The first three Chebyshev polynomials

$$
\begin{array}{ll}
\cos (0 \cdot \theta)=1 & T_{0}=1 \\
\cos (1 \cdot \theta)=\cos (\theta) & T_{1}=X \\
\cos (2 \cdot \theta)=2 \cos (\theta)^{2}-1 & T_{2}=2 X^{2}-1
\end{array}
$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

The Chebyshev polynomials $\left(T_{k}\right)$ verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$.

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev polynomials:

$$
p(x)=\sum_{k=0}^{d} \alpha_{k} T_{k}(x)
$$

A prerequisite to fast multipoint evaluation

Chebyshev polynomials

The Chebyshev polynomials $\left(T_{k}\right)$ verify $\forall k \in \mathbb{N}, T_{k}(\cos \theta)=\cos (k \theta)$.

An arbitrary polynomial pof degree d can be written in terms of the Chebyshev polynomials:

$$
p(x)=\sum_{k=0}^{d} \alpha_{k} T_{k}(x)
$$

For $N \in \mathbb{N}$, a polynomial p of degree d can be evaluated on the Chebyshev nodes $\left(c_{n}\right)_{0 \leq n \leq N-1}$ using the IDCT:

$$
\left(p\left(c_{n}\right)\right)_{0 \leq n \leq N-1}=\frac{1}{2}\left(\alpha_{0}, \ldots, \alpha_{0}\right)+\operatorname{IDCT}\left(\left(\alpha_{k}\right)_{0 \leq k \leq N-1}\right) .
$$

A prerequisite to fast multipoint evaluation

Chebyshev nodes

For $N \in \mathbb{N}$, the Chebyshev nodes are

$$
c_{n}=\cos \left(\frac{2 n+1}{2 N} \pi\right), n=0, \ldots, N-1
$$

They are the roots of T_{N}.
For $N=6$

DFT / DCT

Discrete Fourier Tranform (DFT): $x_{n} \rightarrow \alpha_{k}$

$$
\alpha_{k}=\sum_{n=0}^{N-1} x_{n} e^{-\frac{2 \pi i}{N} n k}
$$

Discrete Cosine Transform (DCT-II): $x_{n} \rightarrow \alpha_{k}$

$$
\alpha_{k}=\sum_{n=0}^{N-1} x_{n} \cos \left[\frac{\pi(2 n+1) k}{2 N}\right]
$$

\Rightarrow Fast thanks to the FFT algorithm $O\left(N \log _{2} N\right)$ [Makhoul, 1980]

Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
\begin{gathered}
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
p\left(c_{n}\right)=\sum_{k=0}^{N-1} \alpha_{k} T_{k}\left(\cos \left(\frac{2 n+1}{2 N} \pi\right)\right)=\sum_{k=0}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right]
\end{gathered}
$$

Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): $\alpha_{k} \rightarrow x_{n}$

$$
\begin{gathered}
x_{n}=\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
p\left(c_{n}\right)=\frac{1}{2} \alpha_{0}+\frac{1}{2} \alpha_{0}+\sum_{k=1}^{N-1} \alpha_{k} \cos \left[\frac{\pi k(2 n+1)}{2 N}\right] \\
\left(p\left(c_{n}\right)\right)_{0 \leq n \leq N-1}=\frac{1}{2}\left(\alpha_{0}, \ldots, \alpha_{0}\right)+\operatorname{IDCT}\left(\left(\alpha_{k}\right)_{0 \leq k \leq N-1}\right)
\end{gathered}
$$

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Assume radix-2, precision-p arithmetic, with rounding unit $u=2^{-p}$. Let \widehat{x} be then computed 2^{n}-point IDCT of $X \in \mathbb{C}^{2^{n}}$, and let x be the exact value. Then

$$
\|\widehat{x}-x\|_{\infty}=n\|X\|_{\infty} O(u)
$$

Table: IDCT error bounds for $p=53$ (double precision)

$N=2^{n}$	1024	2048	4096	8192	16384	32768				
$\\|\widehat{x}-x\\|_{\infty} /\\|X\\|_{\infty}$	$7.97 \mathrm{e}-15$	$8.84 \mathrm{e}-15$	$9.72 \mathrm{e}-15$	$1.06 \mathrm{e}-14$	$1.15 \mathrm{e}-14$	$1.23 \mathrm{e}-14$				

Fast multipoint evaluation and subdivision algorithm

Algorithm: multipoint evaluation and subdivision

Illustration

$$
\begin{aligned}
P(x, y) & =\sum\left(\sum a_{i, j} x^{i}\right) y^{j}=\sum p_{j}(x) y^{j} \\
p_{j}(x) & =\sum a_{i, j} x^{i}=\sum \alpha_{i, j} T_{i}(x) \\
\left(p_{j}\left(c_{n}\right)\right)_{0 \leq n \leq N-1} & =\frac{1}{2}\left(\alpha_{0, j}, \ldots, \alpha_{0, j}\right)+\operatorname{IDCT}\left(\left(\alpha_{k, j}\right)_{0 \leq k \leq N-1}\right)
\end{aligned}
$$

Algorithm: multipoint evaluation and subdivision

 Illustration$$
P\left(c_{n}, y\right)=\sum p_{j}\left(c_{n}\right) y^{j}
$$

Algorithm: multipoint evaluation and subdivision

 Illustration$$
P\left(c_{3}, y\right)=\sum p_{j}\left(c_{3}\right) y^{j}
$$

Algorithm: multipoint evaluation and subdivision

 Illustration$$
P\left(c_{3}, y\right)=\sum p_{j}\left(c_{3}\right) y^{j}
$$

Algorithm: multipoint evaluation and subdivision

 Illustration$$
P\left(c_{3}, y\right)=\sum p_{j}\left(c_{3}\right) y^{j}
$$

Algorithm: multipoint evaluation and subdivision

 Illustration$$
P\left(c_{3}, y\right)=\sum p_{j}\left(c_{3}\right) y^{j}
$$

Algorithm: multipoint evaluation and subdivision

Complexity

$O(d N T)$ with $1 \leq T \leq N$

T : the maximum number of nodes of the subdivision trees over all vertical fibers

With a finite number of branches in the window, we expect $T=O\left(\log _{2}(N)\right)$

Experiments

Drawing for two families of polynomial

 $\xi_{i, j} \in \mathcal{U}[-100,100]$ i.i.d.Kac polynomial

$$
P(x, y)=\sum_{i+j=0}^{d} \xi_{i, j} x^{i} y^{j}
$$

Kostlan-Shub-Smale (KSS) polynomial

$$
P(x, y)=\sum_{i+j=0}^{d} \sqrt{\frac{d!}{i!j!(d-i-j)!}} \xi_{i, j} x^{i} y^{j}
$$

Comparison to state-of-the-art software

- scikit \rightarrow marching squares
- MATLAB \rightarrow could not find the method used
- ImplicitEquations \rightarrow quad-tree and interval arithmetic
- Isotop \rightarrow CAD

Timing

Comparison for a polynomial

Figure: Computation times for a Kac polynomial of degree 40 (in seconds).

Figure: Computation times for a KSS polynomial of degree 40 (in seconds).

Timing

Marching squares and our method for high resolutions

Comparison of computation times for Kac polynomials (in seconds).
Marching cubes: $O\left(d N^{2}\right)$
Our method: $O(d N T)$

Timing

A CAD approach: Isotop

Figure: Computation times for a Kac polynomials (in seconds).

Figure: Computation times for a KSS polynomials (in seconds).

