
Fast High-Resolution Drawing of Algebraic Curves

Nuwan Herath Mudiyanselage
Guillaume Moroz, Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

ISSAC 2022
July 4 - 7, 2022

1 / 1



Implicit curve drawing

2 / 1



Implicit curve drawing problem

Discrete representation of an algebraic curve on a fixed grid

Input: bivariate polynomial P of partial degree d , resolution N

P(x , y) =
d∑

i=0

d∑
j=0

ai,jx
iy j

Implicit curve defined as the solution set

{(x , y) ∈ R2 | P(x , y) = 0}

Output: drawing (set of pixels)

Goal: fast high-resolution drawing of high degree algebraic curves

d ≈ 100

N ≈ 1000

N

3 / 1



Previous work: Marching squares, adaptative subdivision,
CAD

4 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x , y) = 0

5 / 1



Marching squares
Complexity

Complexity (number of elementary operations)
Naive evaluation

O(d2N2)

d partial degree
N resolution of the grid

Arithmetic complexity of the marching squares

With partial evaluation of P(x , y), assuming d < N

O(dN2)

Slow for high resolutions. . .

6 / 1



Methods providing topological correctness
Adaptative 2D subdivision and interval arithmetic

[Snyder, 1992]

[Plantinga & Vegter, 2004]

[Burr et al., 2008]

[Lin & Yap, 2011]

. . .

Cylindrical algebraic decomposition (CAD)

[Gonzalez-Vega & Necula, 2002]

[Eigenwillig et al., 2007]

[Alberti et al., 2008]

[Cheng et al., 2009]

[Kobel & Sagraloff, 2015]

[Diatta et al., 2018]

. . .

7 / 1



Our approach: guaranteed intersection with the grid

8 / 1



Our approach

Evaluation on intersections of the grid

Evaluation along fibers

⇒ Make it fast and provide some guarantees

9 / 1



Our approach

Evaluation on intersections of the grid

Evaluation along fibers

⇒ Make it fast and provide some guarantees

9 / 1



Interval arithmetic

□p is an interval extension of p if on an interval I it verifies

□p(I ) ⊇ p(I ).

x

y

10 / 1



An example

x2 + y2 − 1 = 0

Resolution N = 64

11 / 1



Intersection detection

Detect a crossing between two
consecutive nodes of the grid

Light the adjacent pixels

Exclude a segment S if

0 ̸∈ □p(S) + [−E ,E ]

where{
p(y) =

∑d
i=0 aiy

i

E = d2∥a∥∞(d2 + N log2(N))O(u)

12 / 1



Intersection detection

Detect a crossing between two
consecutive nodes of the grid

Light the adjacent pixels

Exclude a segment S if

0 ̸∈ □p(S) + [−E ,E ]

where{
p(y) =

∑d
i=0 aiy

i

E = d2∥a∥∞(d2 + N log2(N))O(u)

12 / 1



Intersection detection

Detect a crossing between two
consecutive nodes of the grid

Light the adjacent pixels

Exclude a segment S if

0 ̸∈ □p(S) + [−E ,E ]

where{
p(y) =

∑d
i=0 aiy

i

E = d2∥a∥∞(d2 + N log2(N))O(u)

12 / 1



Intersection detection

Detect a crossing between two
consecutive nodes of the grid

Light the adjacent pixels

Exclude a segment S if

0 ̸∈ □p(S) + [−E ,E ]

where{
p(y) =

∑d
i=0 aiy

i

E = d2∥a∥∞(d2 + N log2(N))O(u)

12 / 1



Intersection detection

Some incorrect pixels:

False positive when the evaluation on an
edge of a pixel is close to zero

False negative when a connected
component lies inside of a pixel

12 / 1



Intersection detection

Some incorrect pixels:

False positive when the evaluation on an
edge of a pixel is close to zero

False negative when a connected
component lies inside of a pixel

12 / 1



Fast multipoint evaluation at Chebyshev nodes

13 / 1



A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ).

The first three Chebyshev polynomials

cos(0 · θ) = 1 T0 = 1

cos(1 · θ) = cos(θ) T1 = X

cos(2 · θ) = 2 cos(θ)2 − 1 T2 = 2X 2 − 1

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1).

14 / 1



A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ).

Lemma
An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

p(x) =
d∑

k=0

αkTk(x).

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1).

14 / 1



A prerequisite to fast multipoint evaluation
Chebyshev polynomials

Definition

The Chebyshev polynomials (Tk) verify ∀k ∈ N,Tk(cos θ) = cos(kθ).

Lemma
An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

p(x) =
d∑

k=0

αkTk(x).

Lemma
For N ∈ N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)0≤n≤N−1 using the IDCT:

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1).

14 / 1



A prerequisite to fast multipoint evaluation
Chebyshev nodes

Definition
For N ∈ N, the Chebyshev nodes are

cn = cos

(
2n + 1

2N
π

)
, n = 0, . . . ,N − 1.

They are the roots of TN .

For N = 6

c0c1c2c3c4c5

1−1

15 / 1



DFT / DCT

Discrete Fourier Tranform (DFT): xn → αk

αk =
N−1∑
n=0

xne
− 2πi

N nk

Discrete Cosine Transform (DCT-II): xn → αk

αk =
N−1∑
n=0

xn cos

[
π(2n + 1)k

2N

]
⇒ Fast thanks to the FFT algorithm O(N log2 N) [Makhoul, 1980]

16 / 1



Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

p(cn) =
N−1∑
k=0

αkTk

(
cos

(
2n + 1

2N
π

))
=

N−1∑
k=0

αk cos

[
πk(2n + 1)

2N

]

(p(cn))0≤n≤N−1 =
1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

17 / 1



Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): αk → xn

xn =
1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]

p(cn) =
1

2
α0 +

1

2
α0 +

N−1∑
k=1

αk cos

[
πk(2n + 1)

2N

]
(p(cn))0≤n≤N−1 =

1

2
(α0, . . . , α0) + IDCT((αk)0≤k≤N−1)

17 / 1



Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Theorem

Assume radix-2, precision-p arithmetic, with rounding unit u = 2−p . Let x̂ be then
computed 2n-point IDCT of X ∈ C2n , and let x be the exact value. Then

∥x̂ − x∥∞ = n∥X∥∞O(u).

Table: IDCT error bounds for p = 53 (double precision)

N = 2n 1024 2048 4096 8192 16384 32768
∥x̂ − x∥∞/∥X∥∞ 7.97e-15 8.84e-15 9.72e-15 1.06e-14 1.15e-14 1.23e-14

18 / 1



Fast multipoint evaluation and subdivision algorithm

19 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(x , y) =
∑(∑

ai,jx
i
)
y j =

∑
pj(x)y

j

pj(x) =
∑

ai,jx
i =

∑
αi,jTi (x)

(pj(cn))0≤n≤N−1 =
1

2
(α0,j , . . . , α0,j) + IDCT((αk,j)0≤k≤N−1)

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9 P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(cn, y) =
∑

pj(cn)y
j

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9

P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9

P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9

P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9

P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Illustration

P(c3, y) =
∑

pj(c3)y
j

c0c1c2c3c4c5c6c7c8c9

P(c3, y)

✓

✓

✓

20 / 1



Algorithm: multipoint evaluation and subdivision
Complexity

Arithmetic complexity

O(dNT ) with 1 ≤ T ≤ N

T : the maximum number of nodes of the subdivision trees over all vertical fibers

With a finite number of branches in the window, we expect T = O(log2(N))

21 / 1



Experiments

22 / 1



Drawing for two families of polynomial
ξi,j ∈ U [−100, 100] i.i.d.
Kac polynomial

P(x , y) =
d∑

i+j=0

ξi,jx
iy j

d = 110

Kostlan-Shub-Smale (KSS) polynomial

P(x , y) =
d∑

i+j=0

√
d!

i !j!(d − i − j)!
ξi,jx

iy j

d = 40
23 / 1



Comparison to state-of-the-art software

scikit → marching squares

MATLAB → could not find the method used

ImplicitEquations → quad-tree and interval arithmetic

Isotop → CAD

24 / 1



Timing
Comparison for a polynomial

128 256 512 1024 2048 4096

101

102

103

5.8 6 6 6.1 6.3 7.5

20.3

48.7

169

651
900 900900 900 900 900 900 900

4 4.2 4.5 5 6.1
8.4

N

t
scikit / NumPy

MATLAB
ImplicitEquations
Our method

Figure: Computation times for a Kac polynomial of degree 40 (in seconds).

128 256 512 1024 2048 4096

101

102

103

5.8 5.8 5.8 6 6.3 7.6

19

50

171

656
900 900900 900 900 900 900 900

4.2 4.4 5
6.2

8.7

15

N

t
scikit / NumPy

MATLAB
ImplicitEquations
Our method

Figure: Computation times for a KSS polynomial of degree 40 (in seconds).

25 / 1



Timing
Marching squares and our method for high resolutions

20 30 40 50 100
0

50

100

150

200

d

t

scikit / NumPy
Our method

N = 8192

20 30 40 50 100
0

50

100

150

200

d

t

scikit / NumPy
Our method

N = 16384

20 30 40 50 100
0

50

100

150

200

d

t

scikit / NumPy
Our method

N = 32768

Comparison of computation times for Kac polynomials (in seconds).

Marching cubes: O(dN2) Our method: O(dNT )

26 / 1



Timing
A CAD approach: Isotop

20 30 40 50 100

101

102

103

2.3

18

81

1,603 2,000

21 18 22 23 28

d

t
Isotop

Our method for N = 16384

Figure: Computation times for a Kac polynomials (in seconds).

20 30 40

102

103

12

183

688

26
33

145

d

t
Isotop

Our method for N = 16384

Figure: Computation times for a KSS polynomials (in seconds).

27 / 1


