Fast High-Resolution Drawing of Algebraic Curves
Nuwan Herath Mudiyanselage
Guillaume Moroz, Marc Pouget

Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

ISSAC 2022
July 4 -7, 2022

1/1

Implicit curve drawing

2/1

Implicit curve drawing problem

Discrete representation of an algebraic curve on a fixed grid

o Input: bivariate polynomial P of partial degree d, resolution N

d d
Pl,y)=>_> aijx'yl O

i=0 j=0

Implicit curve defined as the solution set

{(x.y) € R?* | P(x,y) = 0}

@ Output: drawing (set of pixels)

V4 IAN

Goal: fast high-resolution drawing of high degree algebraic curves
e d~ 100
e N =~ 1000

3/1

Previous work: Marching squares, adaptative subdivision,
CAD

4/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x,y) =0

5/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x,y) =0

@

N>

5/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x,y) =0

5/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x,y) =0

5/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm

Implicit equation: P(x,y) =0

5/1

Marching squares
The idea

2D variant of the widely used Marching cubes algorithm
Implicit equation: P(x,y) =0

N7

5/1

Marching squares
Complexity

Complexity (number of elementary operations)
Naive evaluation
O(d>N?)

d partial degree
N resolution of the grid

With partial evaluation of P(x,y), assuming d < N

O(dN?)

Slow for high resolutions. . .

6/1

Methods providing topological correctness

Adaptative 2D subdivision and interval arithmetic
@ [Snyder, 1992]
o [Plantinga & Vegter, 2004]
@ [Burr et al., 2008]
o [Lin & Yap, 2011]
o ...
Cylindrical algebraic decomposition (CAD)
o [Gonzalez-Vega & Necula, 2002]

o [Eigenwillig et al., 2007] o

o [Alberti et al., 2008]
o [Cheng et al., 2009]
o [Kobel & Sagraloff, 2015]
o [Diatta et al., 2018]

25
o ... =

T

Sast
T

T

TITITIT
I T)
L,

3

R

N\

%

7/1

Our approach: guaranteed intersection with the grid

8/1

Our approach

Evaluation on intersections of the grid

Evaluation along fibers

A
L

= Make it fast and provide some guarantees

9/1

Our approach

£ : . : .

Evaluation along fibers

A
L

= Make it fast and provide some guarantees

9/1

Interval arithmetic

Op is an interval extension of p if on an interval / it verifies
Op(1) 2 p(1).

y

10/1

An example

1.00

0.75 4
0.50 4
0.25 4 “
0.00 +
—0.25 1
—0.50 4

—0.75 1

-1

.00 T T T T T T
—1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100

Resolution N = 64

1/1

Intersection detection

12/1

Intersection detection

@ Detect a crossing between two
consecutive nodes of the grid

12/1

Intersection detection

@ Detect a crossing between two
consecutive nodes of the grid

o Light the adjacent pixels

12/1

Intersection detection

@ Detect a crossing between two
consecutive nodes of the grid

o Light the adjacent pixels
@ Exclude a segment S if

0¢0Op(S)+[—E, E]
where

ply) =X qay
E =d?all(d* + Nlogy(N))O(u)

12/1

Intersection detection

Some incorrect pixels: O \

o . N
@ False positive when the evaluation on an S N
edge of a pixel is close to zero

L/

VAR
\

12/1

Intersection detection

Some incorrect pixels:
o False positive when the evaluation on an
edge of a pixel is close to zero
@ False negative when a connected
component lies inside of a pixel

VAR
N/

12/1

Fast multipoint evaluation at Chebyshev nodes

13/1

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

The Chebyshev polynomials (Tx) verify Vk € N, Ty(cos) = cos(k8).

The first three Chebyshev polynomials
cos(0-0) =1 To=1
cos(1 - 0) = cos(6) Ti=X
cos(2 - §) = 2cos(6)* — 1 T,=2X>-1

14/1

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

The Chebyshev polynomials (Tx) verify Vk € N, Ty(cos) = cos(k8).

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

d
p(x) =D ak Ti(x).
k=0

14/1

A prerequisite to fast multipoint evaluation
Chebyshev polynomials

The Chebyshev polynomials (Tx) verify Vk € N, Ty(cos) = cos(k8).

An arbitrary polynomial p of degree d can be written in terms of the Chebyshev
polynomials:

d
p(x) =D ak Ti(x).
k=0

For N € N, a polynomial p of degree d can be evaluated on the Chebyshev nodes
(cn)o<n<n—1 using the IDCT:

(p(cn))o<ncn—1 =3 -y ap) + IDCT((ak Jo<k<n—1)-

14/1

A prerequisite to fast multipoint evaluation
Chebyshev nodes

For N € N, the Chebyshev nodes are

2n+1
c,,—cos(N w), n=0,...,N—1.

They are the roots of Ty.

For N =6

15/1

DFT / DCT

Discrete Fourier Tranform (DFT): x, — ax

Discrete Cosine Transform (DCT-II): x, — ak

N—1
w(2n + l)k}
ag = Z Xp COS {
prd 2N

= Fast thanks to the FFT algorithm O(N log, N) [Makhoul, 1980]

16/1

Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): oy — x,

N—1
1 wk(2n+ 1)
Xn = an + Z oy COS [2/\/}
k=1
N-1 N-1
2n+1 wk(2n +1
p(Cn) = Qg Tk (COS < 2N 71')) = Qi COS |:(2,V):|

k=0

»
i

0

17/1

Multipoint evaluation with the IDCT

Inverse Discrete Cosine Transform (IDCT): oy — x,

N-1
1 wk(2n+1)
Xp = 50{0 + E Q) COS |:2/V:|
k=1
N-1
11 mk(2n+1)
p(cy) = 500 + 500 + E QU COS [QN}

k=1

(p(cn))o<nsn-1 = %(am ..., 00) + IDCT((ok)o<k<n—1)

17/1

Error of the IDCT

[Makhoul, 1980] and [Brisebarre et al., 2020, Theorem 3.4] yield

Assume radix-2, precision-p arithmetic, with rounding unit u = 2P . Let X be then
computed 2"-point IDCT of X € C?", and let x be the exact value. Then

X = xlloo = nll Xl O(u).

Table: IDCT error bounds for p = 53 (double precision)

N =2n | 1024 2048 4096 8192 16384 32768
X —x[[./IXl. | 797e-15 8.84e-16 9.72e-15 1.06e-14 1.15e-14 1.23e-14

18/1

Fast multipoint evaluation and subdivision algorithm

19/1

Algorithm: multipoint evaluation and subdivision

lllustration

POoy) =3 (M aid) ¥ = X piy’
pi(x) = D_aix = i Ti(x)
1

(pi(cn))o<n<n—1 = = (0], - - 0,) + IDCT (v j)o<k<n—1)

2

Algorithm: multipoint evaluation and subdivision

lllustration

P(cn,y) = EPJ(Cn)yj

e o7 G cs c g o ag

20/1

Algorithm: multipoint evaluation and subdivision

lllustration

P(cs,y) = Y pics)y’

P(cs,y)

20/1

Algorithm: multipoint evaluation and subdivision

lllustration

P(cs,y) = Y pics)y’

P(cs,y)

20/1

Algorithm: multipoint evaluation and subdivision

lllustration

P(cs,y) = Y pics)y’

P(cs,y)

20/1

Algorithm: multipoint evaluation and subdivision

lllustration

P(cs,y) = Y pics)y’

P(cs,y)

20/1

Algorithm: multipoint evaluation and subdivision
Complexity

O(dNT) with 1 < T <N

T: the maximum number of nodes of the subdivision trees over all vertical fibers

With a finite number of branches in the window, we expect T = O(log,(N))

21/1

Experiments

2/1

Drawing for two families of polynomial
€ € U[—100,100] i.i.d.
Kac polynomial Kostlan-Shub-Smale (KSS) polynomial

d
Plx,y)= > &X'y
0

i+j=

// N
o /\) l\¥///
e N . /))
\\) “/r . \ (i
N N Pl /(an
d =110 d=140

23/1

Comparison to state-of-the-art software

scikit — marching squares
MATLAB — could not find the method used

ImplicitEquations — quad-tree and interval arithmetic

@ Isotop — CAD

24/1

Timing

Comparison for a polynomial

103t 7777777777777 900 o« 900 900 5200 %0000 200000 W scikit / NumPy
I MATLAB

169 UolmplicitEquations

10? Is Qur method

487
203
10! 58 3 3 6.1 63 || |61 75| |34
Bl s pllllee Al mll[ls Bl m AN N
128 256 512 1024 2048 4096

Figure: Computation times for a Kac polynomial of degree 40 (in seconds).

103 900 900 900 900 900900

900900

""""""""""" o scikit / NumPy
0o MATLAB
UolmplicitEquations

102 B Qur method

10!

128 256 512 1024 2048 4096

Figure: Computation times for a KSS polynomial of degree 40 (in seconds).

25/1

Timing

Marching squares and our method for high resolutions

t t

t
escikit / NumPy ikit / NumPy . *
200 { e Our method 200 f|e Our method R
150 150 150
4
Lo
100 100 100 s
o

50 50 e 50 IS -

0--@-@-@--mmmmmmmm=nn - Eog-o-e

d 0 d 0 d
20 30 40 50 100 20 30 40 50 100 20 30 40 50 100
N = 8192 N = 16384 N = 32768

Comparison of computation times for Kac polynomials (in seconds).

Marching cubes: O(dN?) Our method: O(dNT)

26/1

Timing
A CAD approach: Isotop

t

1603 2000

" Iso

103 top
1Qur method for N = 16384

10?

10!

20 30 40 50 100 d

Figure: Computation times for a Kac polynomials (in seconds).

n Isotop
mQur method for N = 16384

20 30 40

Figure: Computation times for a KSS polynomials (in seconds).

27/1

